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Abstract
A random-ballistic deposition model where particles are aggregated according
to the rules of ballistic deposition with probability p and following a random
deposition process with probability 1−p, respectively, is proposed and studied.
Based on extensive numerical simulations a dynamic scaling ansatz for the
interface width W(L, t, p) as a function of lattice side L, time t and p

is formulated. Three new exponents, which can be linked to the standard
growth exponent of ballistic deposition by means of a new scaling relation, are
identified.

PACS numbers: 6835C, 0250, 0540, 8115C

1. Introduction

The study of the morphology, structure and other physical and chemical properties of growing
interfaces has been a subject of intensive research in recent years [1–4]. This interest is mainly
due to the fact that evolving interfaces can be found in a great variety of physical, chemical
and biological systems and processes. For example, film growth either by vapour deposition,
chemical deposition or molecular-beam epitaxy [1, 5], bacterial growth [6], propagation of
reaction fronts in catalysed reactions [7], propagation of forest fires [8] and diffusion fronts
[9], should be mentioned.

In spite of the great progress achieved in the understanding of interface behaviour, e.g.
due to the introduction of phenomenological dynamic scaling [10], the nonlinear Kardar–
Parisi–Zhang (KPZ) equation [11], renormalization group methods [1, 12], etc, there are still
many controversies and open questions [13]. Within this context it should be recognized
that considerable effort has been devoted to the study of growth models involving one kind
of particle [1–4]. In contrast, less attention has been drawn to the study of the dynamic of
competitive processes. However, these processes are significant to the growth of real materials
in at least two different ways: (a) when the growing process involves two or more kinds of
particles and (b) when deposition of a single kind of particle is considered, but such a type of
particle may undergo different growing mechanisms.
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In fact, the construction of materials with specific electronic, mechanical, optical or
magnetic properties, often requires the deposition of more than one kind of atoms or
molecules. Thus, one example of case (a) arises from the deposition of alloys or systems
with impurities (see, e.g., [14–19] and references therein). In this case, there may be different
interactions between different kinds of particles and the growing mechanisms change [14–
19]. Based on these ideas, Cerdeira et al [14–17] have studied various models for binary
systems involving competitive random-like (RLD) and ballistic-like (BLD) deposition. In
these models the deposition of two kinds of particles A and C (particle A with probability
P and particle C with probability 1 − P ) on a d-dimensional substrate have been studied.
The models exhibit interesting crossover behaviour between both extreme model cases when
P is varied (see [14–17] for additional details). Recently, the scaling behaviour of a two-
component surface-growth model has been studied by Kotrla et al [19]. This study addresses
the relationship between kinetic roughening and phase ordering in a (1 + 1)-dimensional
single-step solid-on-solid model with Ising-like interactions between two components. An
interesting finding is that phase ordering leads to faster kinetic roughening than in the
homogeneous case. However, this behaviour is time dependent and crosses over to the ordinary
behaviour characteristic of homogeneous samples [19]. Very recently, the interplay between
surface roughening and phase separation during the growth of a binary mixture in (1 + 1)-
dimensions has also been studied by means of numerical simulations and field-theoretical
calculations [18].

On the other hand, considering deposition of one kind of particle (case b), Pellegrini
et al [20, 21] have studied a ballistic model of surface growth that considers ‘sticky’ and
‘sliding’ particles. The model interpolates between a standard ballistic model when only
sticky particles are deposited (with probability P = 1) and a completely restructured ballistic
model for P = 0 when only unrestricted sliding particles are allowed to become attached to
the sample. Using this model Pellegrini et al [20, 21] have given evidence of a roughening
transition in dimensions d = 3 and 4, while such a kind of transition is no longer observed
in d = 2. Also, this surface roughening transition is accompanied by a transition in the
bulk of the sample that is characterized by a singularity in the compactness of the aggregate
[20, 21].

Another scenario for the deposition of a single kind of particle in a competitive process
arises from the growth of polycrystalline films [5]. In this case, particles deposited in the
central area of small crystals undergo restricted diffusion, while particles deposited close to
the intercrystalline gaps can experience intercrystalline diffusion and consequently different
adsorption mechanisms have to be considered [5].

It should also be mentioned that in a related context of competitive growing processes,
Derrida and Dickman [22] have studied the interface formed by the competitive growth of
different Eden clusters. Also, one of us has recently investigated the properties of the interface
generated by the collision of two (Eden) growing interfaces [24].

The aim of this paper is to explore an alternative approach to the study of competitive
dynamic processes. In fact, we propose a model in which two different growth dynamics,
namely random deposition and ballistic deposition, undergo a stochastic competitive process.
It is worth mentioning that this process can be well described by a generalized dynamic
phenomenological scaling approach that requires an additional set of new exponents.

The manuscript is organized as follows. Firstly, in section 2, the model is described and the
standard dynamic scaling approach briefly reviewed. Subsequently, in section 3 our numerical
results are presented and discussed. A generalized scaling approach is developed during the
discussion of the results. Finally, our conclusions are stated in section 4.
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2. Description of the model, the simulation method and the standard dynamic scaling
approach

We studied a discrete growth model, namely the BD/RD model, where particles are aggregated
according to the rules of ballistic deposition (BD) with probability p and according to the rules
of random deposition (RD) with probability (1 − p). Simulations were performed in (1 + 1)-
dimensions using lattices of side L and assuming periodic boundary conditions.

RD is probably the simplest growth model: from a randomly chosen site over the surface
of length L, a particle falls vertically until it reaches the top of the column under it, whereupon
it is deposited. BD was previously introduced as a model of colloidal aggregates [1]. The
lattice version of BD is rather simple to describe: a particle is released from a random position
above the surface of length L. Of course, such a particle is initially located at a distance larger
than the maximum height of the interface. Subsequently, the particle follows a straight vertical
trajectory until it reaches the surface, whereupon it sticks. Snapshot configurations of RD and
BD aggregates, and further details on the deposition rules can be found in [1].

In order to study the growth process quantitatively it is convenient to introduce some
definitions. The interface of the aggregate is defined as the set of particles that are placed at
the highest position of each column. So, the mean height of the interface, 〈h(t)〉, at time t is
given by

〈h(t)〉 ≡ 1

L

L∑
i=1

h(i, t) (1)

where h(i, t) is the height of the ith column at time t . The interface width, W(L, t), which
characterizes the roughness of the interface, is also defined by the rms fluctuation in height,

W(L, t) ≡
√√√√ 1

L

L∑
i=1

[h(i, t)− 〈h(t)〉]2. (2)

The Family–Vicsek scaling relation [10] has proved to be very successful for the
description of the dynamic evolution of a growing interface, namely

W(L, t) ∝ Lαf

(
t

LZ

)
(3)

where the exponents α and Z are called the roughness exponent and the dynamic exponent,
respectively. Also, f (u) is a suitable scaling function that behaves as follows: (a) f (u) =
constant for u � 1 or, in other words, the interface width saturates for a long enough time
and (b) f (u) ∝ uβ for u � 1. The former condition implies that W(t) ∝ tβ may hold during
the short-time regime, where β is the growth exponent. A scaling relationship can easily be
derived so that Z = α

β
and only two independent exponents remain.

For the RD model, W(t) does not saturate due to the lack of lateral correlations, so

W(t) ∝ tβRD (4)

independent ofLwith βRD = 1
2 . In contrast, the BD process causes the development of lateral

correlations and, therefore,

W(t) ∝ tβBD L → ∞ (5)

and

W(t) ∝ LαBD t → ∞ (6)

with βBD = 1
3 , αBD = 1

2 , which gives ZBD = 3
2 .
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Figure 1. Log–log plots of the interface width (W ) versus time for the BD/RD model as obtained
for: (a) L = 256 and different values of p as indicated in the figure, and (b) p = 0.16 and lattices
of different size, as indicated in the figure. In figure (b) the arrows show the location of tx1 and tx2
for the data corresponding to L = 1024. Also in (b) the broken (full) curve has slope βRD = 1

2
(βBD = 1

3 ), respectively, and have been drawn for the sake of comparison. More details in the text.

 

Figure 2. (a) Log–log plots of WS(L, p)L
−αBD versus p obtained for lattices of different size, as

indicated in the figure, and assuming αBD = 1
2 . The full line has slope δ = 0.45 and corresponds

to the best fit of the data. The inset shows the same scaled plot but obtained assuming α′
BD = 0.43.

Again, the full line with slope δ = 0.45 shows the best fit of the data. (b) Log–log plots of tx2L
−ZBD

versus p obtained for lattices of different size, as indicated in the figure, and assuming ZBD = 3
2 .

The full line has slope y = 0.97 and corresponds to the best fit of the data. The inset shows the
same scaled plot but obtained assuming Z′

BD = 1.4. Again, the full line with slope y = 0.97
shows the best fit of the data. More details are given in the text.

3. Results and discussion

Figure 1(a) shows plots ofW versus t obtained for the BD/RD model using different values of
p. For p = 0 the monotonic growth of W characteristic of the RD process can be observed,
while introducing the ballistic competition, saturation occurs. However, it is worth mentioning
that the saturation value of W depends sensitively on p. Figure 1(b) shows plots of W
versus t obtained for lattices of different size but keeping p = 0.16 constant. Here, as
well as in figure 1(a) three different regimes and the corresponding crossovers can easily be
observed. For short times, say t < tx1, the growth is dominated by the RD process since
correlations have not already developed. So, it follows that W(t) ∝ tβRD , t < tx1. During an
intermediate time regimen, say tx1 < t < tx2, correlations have developed and the BD process
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Figure 3. (a) Log–log plot ofW versus t for the BD/RD model obtained forL = 1024 and different
values of p as indicated in the figure. (b) Log–log plot of the ordinate intersection (OI) obtained
from figure 3(a) versus p. The straight line with slope γ = 0.17 corresponds to the best fit of the
data. More details in the text.

dominates. So, W(t) ∝ tβBD results. Finally, for t > tx2, correlations can no longer develop
due to the geometrical constraint of the lattice size and saturation is observed. In order to
outline a phenomenological dynamic scaling approach, we propose the following ansatz for
the saturation value of the interface width (Ws(L, p)) and the crossover time tx2 :

Ws(L, p) ∝ LαBDp−δ (p > 0) (7)

and

tx2(L, p) ∝ LZBDp−y (p > 0) (8)

where δ and y are exponents. Figure 2(a) shows log–log plots of Ws(L, p)/L
αBD versus p.

Using the exact value αBD = 1
2 , straight lines are observed, in agreement with equation (7),

and the best fit gives the slope δ ∼= 0.45 ± 0.01. However, a rather small systematic deviation
of the data, according to the size of the lattice, is observed: the larger the lattice, the smaller
the ordinate. This behaviour may be due to corrections of scaling of higher order that we have
neglected in equation (7). On the other hand, using the roughness exponent obtained by fitting
our data α′

BD = 0.43 ± 0.05, e.g. from figure 1(b), data collapsing is excellent, as shown in
the inset of figure 2(a). In this case, the obtained slope is also δ ∼= 0.45 ± 0.01. So, both fits
shown in figure 2(a) point out that equation (7) holds. Figure 2(b) also shows log–log plots
of tx2/L

ZBD versus p. Again, systematic deviations are observed when using the exact value
of ZBD = 3

2 but excellent collapse is found using the value of Z′
BD = 1.4 ± 0.1 obtained by

fitting our data. Therefore, our assumption in equation (8) is also validated. The best fit of the
data yields y ∼= 0.97 ± 0.02.

Figure 3(a) shows log–log plots of W versus t where both the short- and intermediate-
time behaviour of the BD/RD model can clearly be observed. Results were obtained for
different values of p keeping L = 1024 constant. As has already been mentioned, the short-
(intermediate-) time behaviour is dominate by the RD (BD) process, respectively. The fact
that the straight lines corresponding to the intermediate regime are equally spaced and have
slopes βBD = 1

3 (for t > tx1) (note that p varied in powers of 2) suggests the operation of a
power-law behaviour that we assume to be of the form

W(t, p) ∝ tβBDp−γ (tx1 < t < tx2) (9)

where γ is an exponent.
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Figure 4. Log–log plot of W(t, L, p)L−αBDpδ versus t/LZBDp−y obtained for different values
of p (0.01 � p � 0.64) and lattices of size L = 256 and 512, as indicated in the figure.

Evaluating the ordinate intersection OI (p) for different values of p in figure 3(a), it is
possible to draw a plot of OI (p) versus p as shown in figure 3(b), which yields the exponent
γ = 0.17 ± 0.01.

Our numerical results supporting the assumptions of equations (7)–(9), lead us to propose
the following phenomenological dynamic scaling ansatz for the BD/RD model:

W(t, L, p) ∝ LαBDp−δF
(

t

LZBDp−y

)
p > 0 t > tx1 L → ∞ (10)

where F(u) is a suitable scaling function such as: (a) F(u) = constant for u � 1; in this
way equation (7) is recovered for every saturated interface width; and (b) F(u) = uβBD for
u � 1. Therefore, equation (9) can be recovered if the following scaling relationship between
the exponents holds:

yβBD − δ + γ = 0 (11)

where the identity ZBD = αBD/βBD has been used. Using the exact value βBD = 1
3 and our

estimations for y, δ and γ we obtain yβBD − δ + γ = 0.04 ± 0.03. Also, using our best fit for
β ′
BD ≈ 0.3 we obtain yβ ′

BD − δ + γ = 0.01 ± 0.03. These results lead us to conjecture the
following exact (rational) values for the new exponents:

y ≡ 1 (0.97 ± 0.02) δ ≡ 1
2 (0.45 ± 0.01) γ ≡ 1

6 (0.17 ± 0.01) (12)

where the values between brackets are our numerical estimation. It should be noted
that the difference between the rational exponents and the measured ones are within the
range of discrepancy observed when comparing our values of the exactly known exponents
corresponding to BD, namely βBD = 1

3 (0.31 ± 0.02), αBD = 1
2 (0.43 ± 0.05) and

ZBD = 3
2 (1.4 ± 0.1) where the values between brackets are our numerical estimations. Of

course, equation (11) implies that only two of the new exponents may be independent.
In order to check our conjectures, figure 4 shows log–log plots of W(t, L, p)L−αBDpδ

versus t/LZBDp−y . The excellent data collapsing obtained for different values of L and p
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strongly supports our ansatz given by equation (10). As expected, the failure of data collapsing
is observed outside the range of validity of our ansatz, e.g. for t < tx1.

It should be noted that the conjectured exact values of the crossover exponents can be
obtained using a simple (but misleading) phenomenological argument. In fact, since the RD
process does not induce lateral correlations, the relevant time scale for the lateral spreading
of correlations should be pt (i.e. the number of BD particles deposited per site) rather than
t . It then immediately follows that, at least for small p, the crossover time tx1 is of the order
of 1/p, and tx2 is of the order of LzBD/p. This implies that y = 1. Moreover, demanding
that the surface width in equation (9) matches the RD behaviour at tx1 yields γ = 1

6 , and the
third exponent follows from the scaling relation (11). However, we would like to stress that
this simple argument is misleading because it does not hold for the case of the competitive
dynamic between RD and random deposition with relaxation (RDR). In fact, based on extensive
numerical simulations we have found [25] that the relevant time scale for the spreading of the
correlations in the RD/RDR systems is given by p2t with yRD/RDR = 2 (instead of pt with
yRD/BD = 1). So, we conclude that the exponent y is not trivial at all, but it is related to the
capacity of the process capable of generating correlations (either BD or RDR) to suppress the
fluctuations of the competing RD process [25].

4. Conclusions

Summing up, a competitive growth process is introduced and studied. The properties of the
resulting growing interface is rationalized by means of a new phenomenological dynamical
scaling approach that involves two new exponents. The proposed ansatz (equation (10))
generalizes the pioneering scaling ansatz of Family and Vicsek [10], and allows us to establish
a scaling relation, given by equation (11), between the new exponents and the well known
growth exponent of ballistic deposition. We expect that this work will stimulate the study of
competitive growth processes and the search of generalized dynamic scaling approaches.
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